ABSTRACT BOOK
7th Croatian Cochrane Symposium

ABSTRACT BOOK

Table of contents

In alphabetical order of the first author's surname

Page 3
Svjetlana Došenović, Antonia Jeličić Kadić, Maja Boban, Livia Puljak: Analysis of systematic reviews on interventions for the management of neuropathic pain: a protocol for assessment of current evidence-based knowledge

Page 4
Fidahić Mahir, Livia Puljak, Antonia Jelicic Kadic, Mislav Radic: Celecoxib for rheumatoid arthritis: a Cochrane systematic review protocol

Page 5
Tomislava Jukić, Irena Zakarija Grković: Awareness and implementation of National Institute for Health and Care Excellence (NICE) intrapartum guidelines amongst Croatian obstetricians and gynaecologists

Page 6
Mersiha Mahmić Kaknjo: Screening Embase for Randomised Controlled Trials Project for Cochrane

Page 7
Davorka Vrdoljak, Dragomir Petric, Ines Diminić Lisica, Ksenija Kranjčević, Sanja Došen Janković, Ita Delija, Livia Puljak: Knowledge and attitudes towards evidence-based medicine of mentors in general practice can be influenced by using medical students as academic detailers
Analysis of systematic reviews on interventions for the management of neuropathic pain: a protocol for assessment of current evidence-based knowledge

Svjetlana Došenović¹, Antonia Jeličić Kadić¹, Maja Boban², Livia Puljak¹

¹Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia
²Agency for Quality and Accreditation in Health Care and Social Welfare, Zagreb, Croatia

Correspondence to: Svjetlana Došenović; sdosenovic@yahoo.com

Key words: neuropathic pain management, pain measurement, systematic review, meta-analysis

Background: Neuropathic pain, i.e. pain caused by a lesion or disease of somatosensory system, is a common health care problem with an reported prevalence of 8%. Neuropathic pain has a significant effect on quality of life and many affected patients do not receive appropriate pain relief.

Objectives: To evaluate systematic reviews and meta-analyses on the efficacy and safety of interventions for the management of neuropathic pain.

Methods/study design: We searched following databases: MEDLINE, Cochrane library, DARE, CINAHL, and PsycINFO until March 2015. Systematic reviews and meta-analyses evaluating efficacy and safety of any type of intervention for neuropathic pain treatment that measured pain level were included without age, language or publication date restriction. Titles and abstracts of retrieved records were screened by three independent authors. Retrieved papers will be screened for eligibility and the quality and completeness of included studies will be critically appraised using the AMSTAR tool and PRISMA statement. Pain measurement scales used in the included studies will be assessed as well.

Results: After removing duplicates, 2412 remaining records were screened independently by three reviewers to remove irrelevant and incorrectly retrieved records. At this stage, 982 potential studies remained for eligibility determination. Three independent authors will analyze the full text manuscripts and extract the data. References and citations of included studies will be screened as well using the same procedure.

Conclusion: This study will provide information regarding assessment of the clinical benefits and safety of various interventions in the management of neuropathic pain.
Celecoxib for rheumatoid arthritis: a Cochrane systematic review protocol

Mahir Fidahic¹, Livia Puljak², Antonia Jelicic Kadic², Mislav Radic³

¹Faculty of Medicine, University of Tuzla, Bosnia and Herzegovina; ²Laboratory for Pain Research, University of Split School of Medicine, Split, Croatia; ³University Hospital Split, Division of Rheumatology and Clinical Immunology, Split, Croatia

Correspondence to: Mahir Fidahic: mahir.fidahic@gmail.com

Key words: rheumatoid arthritis, celecoxib, Cochrane systematic review

Background: Rheumatoid arthritis (RA) is a systemic auto-immune disorder that causes persistent and widespread inflammation of the synovial membrane of the joints and tendon sheaths. Incidence of RA has been growing in the last decades especially in women. The peak of RA prevalence occurs in older ages, and it is expected that number of people living with RA will increase in future. Current treatment options for RA include disease modifying antirheumatic drugs (DMARDs) synthetics and biologics, nonsteroidal antirheumatic drugs (NSAIDs), glucocorticoids, analgesics, and rarely cytostatics. The objective of this systematic review is to assess the clinical benefits and safety of celecoxib in RA.

Methods/design: This review will be conducted according to the guidelines recommended by the Cochrane Musculoskeletal Group Editorial Board. We will conduct searches in three specialized electronic databases for randomized controlled trials (MEDLINE, Embase and The Cochrane Library/CENTRAL) until April 2015, with a combination of keywords and MeSH terms. We will include trials comparing oral celecoxib with no intervention, placebo or another marketed NSAID. Citations, abstracts, and relevant papers will be screened for eligibility by two reviewers independently. Studies will be critically appraised using the Cochrane risk of bias tool. Three reviewers will independently review the studies in three steps: (1) abstract/title screening, (2) full-text screening of accepted studies, and (3) data extraction of accepted studies. Studies will be aggregated for meta-synthesis (qualitative) and meta-analysis (quantitative), should the data permit.

Discussion: This protocol provides information regarding assessment of the clinical benefits and safety of celecoxib in RA. This will be update of the systematic review from 2002 on the same topic. Our results will facilitate evidence-based management of patients with RA.

Systematic review registration: The protocol is a registered title within the Cochrane Library.
Awareness and implementation of National Institute for Health and Care Excellence (NICE) intrapartum guidelines amongst Croatian obstetricians and gynaecologists

Tomislava Jukić¹; Irena Zakarija-Grković²

¹Final year medical student, University of Split School of Medicine, Split, Croatia
²Co-Director, Cochrane Croatia, University of Split School of Medicine, Split, Croatia

Correspondence to: Irena Zakarija-Grković; irena.zakarija-grkovic@mefst.hr

Key words: NICE intrapartum guidelines, awareness, acceptance, implementation, attitudes

Background: NICE clinical guidelines are systematically-developed recommendations on how healthcare and other professionals should care for people with specific conditions. The recommendations are based on the best available evidence. They are intended for the National Health Service in England but are used worldwide as a reliable source of information. Updated guidelines on intrapartum care (care of healthy women and their babies during childbirth) were published in December 2014.

Objectives: To determine the awareness of, attitude towards and implementation of NICE intrapartum guidelines among Croatian obstetricians and gynaecologists (O&Gs).

Methods: A 27-item questionnaire for clinical stakeholders was constructed following consultation with NICE and Guidelines International Network (GIN) advisers. The survey consisted of 11 open questions, and 16 closed questions to which respondents could reply “agree”, “disagree” or “partly agree”. The survey was conducted at the Department for Obstetrics and Gynaecology, University Hospital Split, Croatia, from 21st to 28th April, 2015. The questionnaire was distributed to all employed O&Gs, as well as to resident trainees. Approval for the study was obtained from the Institutional Review Board of the University Hospital Split.

Results: Thirty-two questionnaires were distributed to 25 specialists and 7 trainees. Three were completed and returned. Attitudes towards the topic of the questionnaire are reflected in the comment by one doctor: “Guidelines in which the possibility of giving birth outside of the hospital is discussed, are not even considered by O&Gs here.”

Conclusions: NICE intrapartum guidelines do not appear to be acknowledged, accepted or implemented among a non-representative sample of Croatian obstetricians and gynaecologists.

Screening Embase for Randomised Controlled Trials Project for Cochrane

Mersiha Mahmić-Kaknjo

Zenica Cantonal Hospital, Zenica, Bosnia and Herzegovina

Correspondence to: Mersiha Mahmić Kaknjo; mmahmickaknjo@gmail.com

Key words: screening, Embase, Cochrane, randomised controlled trials

How it all began: This is the first formal Cochrane project which employed crowdsourcing for a specific task in maintaining of a Cochrane product or a service. Aim was to screen EMBASE on Randomised Controlled Trials (RCTs) in a fast and efficient, yet volunteer-friendly approach. The tool was developed by Metaxis LTD, developer of the Cochrane Register of Studies, the Cochrane Dementia and Cognitive Improvement Group and York Health Economics Consortium.

Principle: All records have been viewed by at least two screeners. Records viewed by ‘novice’ screeners need three consecutive agreements on the record’s relevance for it to then be either published in CENTRAL or ‘rejected’. Disagreements have been arbitrated by experts. All new screeners have to complete a small, interactive test set of records before progressing to ‘live’ records. This task has been designed so volunteers experience no burden of working to a deadline, they can screen when, and as much as they feel fine.

Accuracy and speed: Two validation exercises were run, crowd sensitivity and crowd specificity came out at over 99% for both measures. Key words and phrases highlighted has significantly reduced the time it takes a screener to classify a record, it takes on average almost twice as long to screen a record when the highlight function is switched off. It takes on average 35 seconds to screen a record. Reject records are significantly quicker to screen.

The results: As of May 1st, 139,446 records have been screened, 5,530 RCTs identified and 1,081 volunteers taking part.
Knowledge and attitudes towards evidence-based medicine of mentors in general practice can be influenced by using medical students as academic detailers

Davorka Vrdoljak1, Dragomir Petric2, Ines Diminić Lisica3, Ksenija Kranjčević4, Sanja Došen Janković5, Ita Delija6, Livia Puljak7

1Department of Family Medicine, University of Split School of Medicine, Split, Croatia
2Department of Family Medicine, University of Split School of Medicine, Split, Croatia
3Department of Family Medicine, University of Rijeka School of Medicine, Rijeka, Croatia
4Department of Family Medicine, Zagreb University School of Medicine, School of Public Health Andrija Stampar, Rockefellerova 4, Zagreb, Croatia
5Health centre of Splitsko-dalmatinska county, Kavanjinova 2, Split, Croatia
6Health centre of Splitsko-dalmatinska county, Kavanjinova 2, Split, Croatia
7Laboratory for Pain Research, University of Split School of Medicine, Soltanska 2, Split, Croatia

Correspondence to: Davorka Vrdoljak, davorka.vrdoljak@mefst.hr

Key words: evidence-based medicine, general practice, academic detailing

Background: Regular use of evidence-based medicine (EBM) among general practitioners (GP) is insufficient.

Objectives: To analyze whether knowledge and attitudes about EBM can be improved among mentors in general practice by involving sixth-year medical students as academic detailers.

Methods: An interventional non-randomized before-and-after study included 98 GPs (49 in the intervention group of mentors and 49 controls) and 174 medical students attending Family Medicine clinical rotations. A telephone survey on knowledge and attitudes towards EBM was conducted among participating physicians before and six months after the rotation. During the rotation, each mentor chose two cases from real life, and the students’ task was to form an answerable clinical question, find the evidence-based answer and to write a brief report. The mentor reviewed the report and discussed it with the student.

Results: Students’ EBM detailing intervention led to significant improvement in knowledge and attitudes about EBM in the intervention group of mentors in general practice compared to control GPs (relative increase in knowledge was 20±46.9% vs. 6±12.1%, respectively; P=0.042). Among participants with PhD or specialization in family medicine, the observed effects of the intervention were similar as in the total sample, and statistically significant, but not in the group of participants with neither scientific degree nor specialization in family medicine (Table 1).

Conclusions: Knowledge and attitudes of GP mentors towards EBM can be improved by involving medical students as academic detailers. Further studies should explore the effectiveness of this method among GPs that are not mentors and who do not have a specialization or research degree.

Article accepted for publication in European Journal of General Practice, 2015.
Table 1. Self-evaluated knowledge of GPs before and after an educational intervention presented as the percentage out of the maximum achievable score on six 5-point scales ranging from “insufficient” to “excellent”

<table>
<thead>
<tr>
<th>Sample</th>
<th>Before the intervention</th>
<th>After the intervention</th>
<th>Absolute difference</th>
<th>Relative difference</th>
<th>P</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=49)</td>
<td>56 (20.4)</td>
<td>62 (18.1)</td>
<td>6 (12.1)</td>
<td>20 (46.9)</td>
<td>0.038</td>
<td>0.20</td>
</tr>
<tr>
<td>Control group (n=49)</td>
<td>46 (15.0)</td>
<td>47 (16.4)</td>
<td>1 (11.8)</td>
<td>6 (27.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratified analysis: PhD or specialization in family medicine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=37)</td>
<td>57 (21.1)</td>
<td>64 (18.1)</td>
<td>7 (12.2)</td>
<td>22 (51.1)</td>
<td>0.039</td>
<td>0.24</td>
</tr>
<tr>
<td>Control group (n=34)</td>
<td>48 (16.7)</td>
<td>49 (18.3)</td>
<td>1 (12.7)</td>
<td>50 (26.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stratified analysis: No scientific degree nor specialization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervention group (n=12)</td>
<td>51 (18.1)</td>
<td>53 (15.6)</td>
<td>3 (11.8)</td>
<td>12 (29.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control group (n=15)</td>
<td>41 (9.4)</td>
<td>42 (10.0)</td>
<td>1 (9.9)</td>
<td>7 (32.4)</td>
<td>0.34</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Data are presented as arithmetic mean (standard deviation)
Abbreviations: P = Mann-Whitney U test, one-tail Monte Carlo statistical significance on the sample of 10,000 tables; r = standardized effect size calculated as Z/(sqrt(n))

References